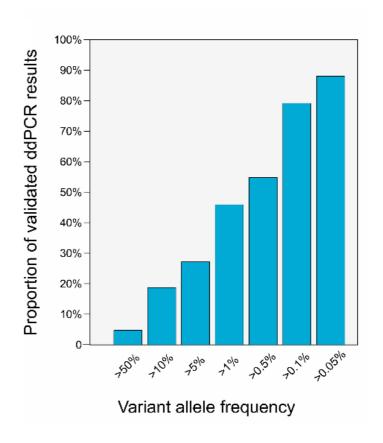

MobiCT: un pipeline opensource pour l'analyse de l'ADN tumoral circulant

SÉMINAIRE BIOINFODIAG 2025

SIMON CABELLO-AGUILAR, PHD
LABORATOIRE DE BIOLOGIE DES TUMEURS SOLIDES
CHU MONTPELLIER

Sommaire

- Introduction
 - Rationnel
 - L'ADN libre circulant
 - L'ADN tumoral circulant
- Le pipeline: MobiCT
 - Deduplication par UMI
 - Variant calling
 - Interface d'interprétation
- Performances
- Conclusions & perspectives

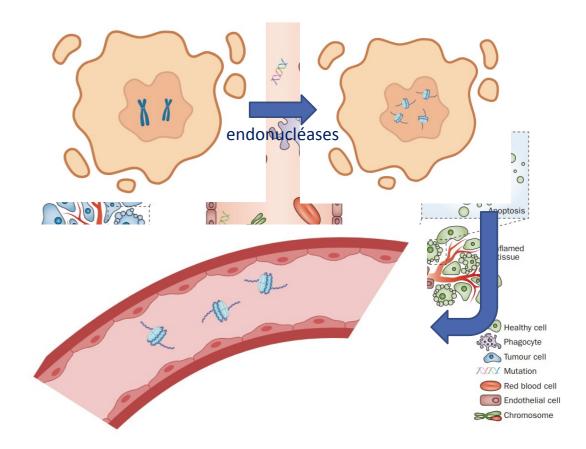

Introduction

Pourquoi?

- Détection SNV / petits indels
- Activité effectuée au laboratoire en ddPCR
- Augmentation activité
- Nouvelles indications
- Passage en NGS

Comment?

- Panel Twist avec UMI
- Très faibles VAF (>0,1%)
- Très grande profondeur

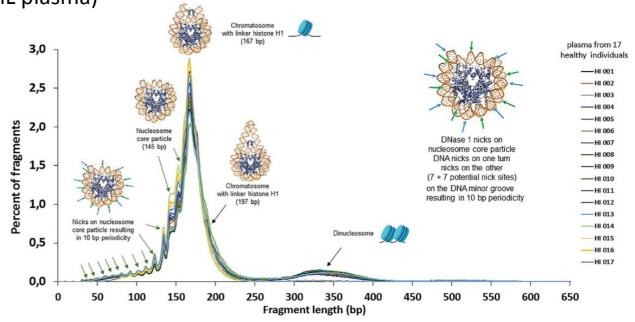


L'ADN libre circulant

ADN libre circulant (cfDNA):

- 100 milliards cellules nucléées / jour
- Peu de quantité (1000 genome equivalents / mL plasma)
- Demi-vie 15-100min
- Variable selon les types cellulaires
- Nucleosomes

Crowley et al., *Nat Rev Clin Onc*, 2013 Sender and Milo, *Nature Medicine*, 2021 Che et al., *EVCNA*, 2022 Loyfer et al., *Nature*, 2023 Sender et al. *eLife*, 2023



L'ADN libre circulant

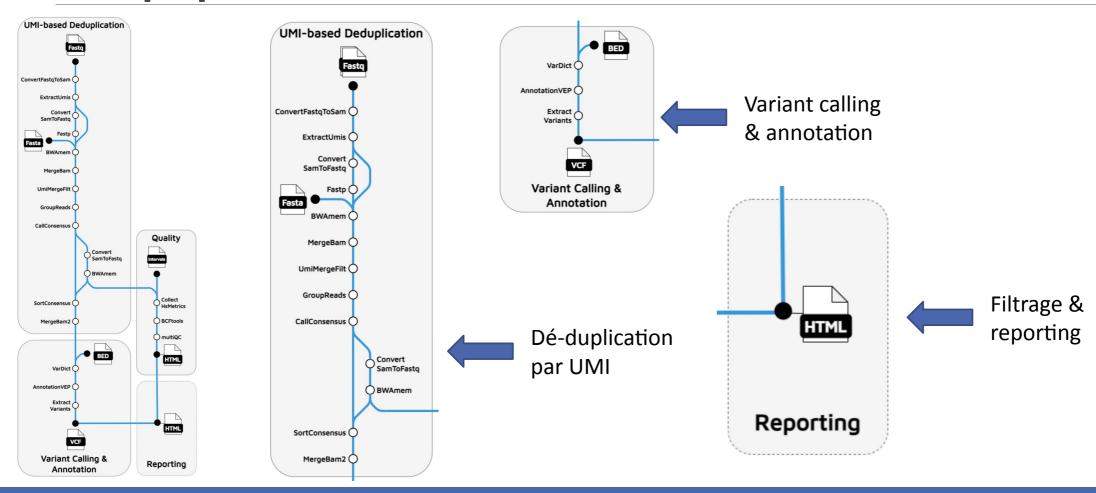
ADN libre circulant (cfDNA):

- 300 milliards cellules / jour
- Peu de quantité (1000 genome equivalents / mL plasma)
- Demi-vie 15-100min
- Variable selon les types cellulaires
- Nucleosomes
- Taille des fragments

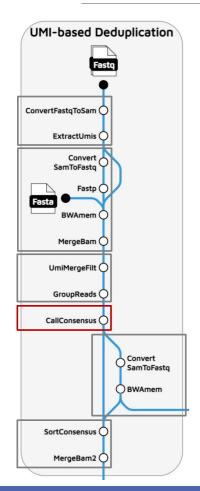
Crowley et al., *Nat Rev Clin Onc*, 2013 Sender and Milo, *Nature Medicine*, 2021 Che et al., *EVCNA*, 2022 Loyfer et al., *Nature*, 2023 Sender et al. *eLife*, 2023

L'ADN tumoral circulant

ADN tumoral circulant (ctDNA):


- Une fraction du cfDNA
- Hétérogénéité clonale
- Dépend du stade
- Dépend du type de tumeur
- Taille des fragments
- Paradoxes (origine, proportion ~50x « trop »)

100% Proportion of validated ddPCR results 90% 80% 167 bp 70%-147 bp delling 60% 10 bp 50% periodicity Open and accessible (Hypomethylation) 40% 30% 20% 10%-Short cfDNA fragment 200 150 100 **Chromosome** Variant allele frequency Fragment length (bp


Cancer du poumon

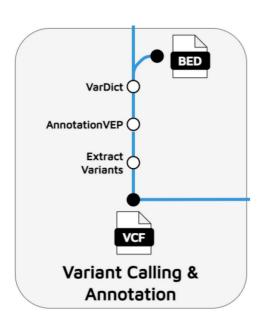
Crowley et al., *Nat Rev Clin Onc*, 2013 Udomruk et al., *Crit Rev Onc/Hem*, 2021 Wang et al., *Epi & Chrom*, 2023

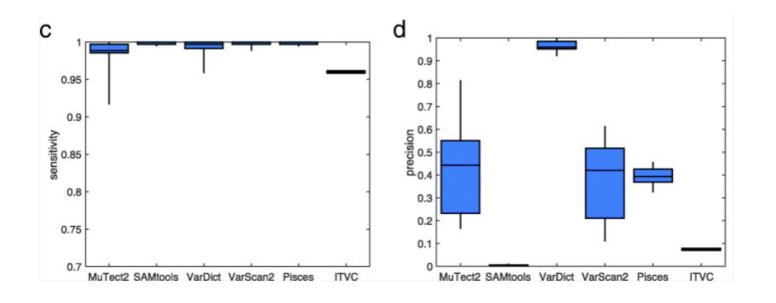
Le pipeline: MobiCT

Dé-duplication par UMI

Meilleurs résulats:

- Le plus de « reads »
- La VAF la plus proche de la référence

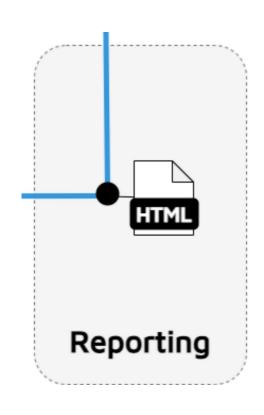

fgbio::CallMolecularConsensusReads https://fulcrumgenomics.github.io/fgbio/tools/latest/CallMolecularConsensusReads.html

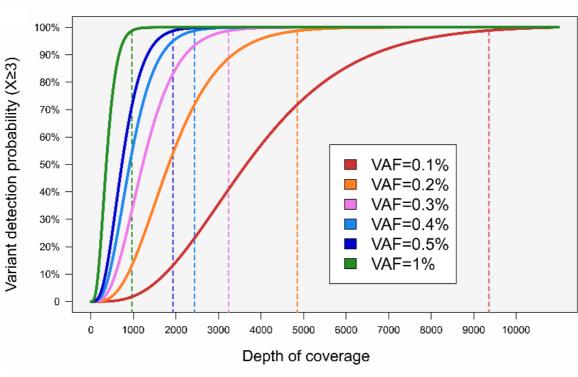

Appelle des séquences consensuelles à partir des reads partageant le même UMI.

Les reads ayant le même UMI sont analysés base par base afin d'évaluer la probabilité de chaque base dans la molécule source. Le modèle de probabilité est le suivant :

3. Enfoitités qualitéchrente distributé la characte extenses autétique distributé plantific quantific de la molécule source de la molécule source, tandis que son complément (1 moins cette probabilités, afin d'obtenir une probabilité a posteriori, qui représente la probabilité que la molécule source ait été un A, C, G ou T juste après l'intégration de l'UMI et jusqu'au séquençage, en tenant compte des observations. La base présentant la probabilité a posteriori maximale est choisie comme base consensuelle, et cette probabilité est utilisée comme la qualité de cette base consensuelle.

Variant calling & annotation




→ Utilisation de VarDict et VEP pour l'annotation

Karimnezhad et al., BMC Med Gen, 2020.

Interface d'interprétation

→ Comment rendre les résultats négatifs ?

Limite de détection:

VAF théorique minimale pour laquelle la probablilité de détecter au moins 3 reads mutés est > 0.99 (LoD p<0.01)

/hitelist •	VD	DP \$	chrom \$	pos	ref
5	89	6907	chr7	55174771	AGGAATTAAGAG
	59	6389	chr2	29222410	Т
	46	6109	chr17	7675119	G
	8	1417	chr9	136513019	Α
	26	5878	chr9	136496492	TGTG
					
earch W	Sei	Sea	Search	Search p	Search ref

Cabello-Aguilar et al., CCLM, 2025, in revision

Performances

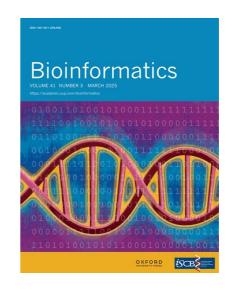
5 stratégies de filtrage:

- No filter
- >3 reads
- Whitelist
- LoD
- Combinaison

19 échantillons patients5 contrôles commerciaux

	1 —
	0,9
	0,8
Se	0,7
Pr	0,6
F-score	0,5
1-30016	0,4
	0,3
	0,2
	0,1
	o Filter 1

Total	1539	
TP	164	
FP	1375	
FN	14	
Se	0,921	
Pr	0,107	
F-score	0,191	


Conclusions & perspectives

Conclusions:

- Problème compliqué
- Optimisation de la déduplication
- LoD dynamique + « whitelist »
- Se et Pr ~0,9

Perspectives:

- Calcul de la fraction tumorale circulante
- ctDNA dans d'autres fluides (urine, salive, LCR, ...)

MobiCT: a UMI-based circulating tumor DNA analysis pipeline

Simon Cabello-Aguilar^{1,4}, Charles Van Goethem^{2,4,+}, Jean-Charles Delmas^{3,4,+}, Oussama Bourbia^{1,4}, Romain Senal¹, Mireille Cossée^{2,5}, Olivier Ardouin⁴, Jérôme Solassol^{1,6,*}, Julie A. Vendrell¹

→ Under review

Remerciements

Laboratoire de BioTS:

- J. Solassol
- J. Vendrell
- O. bourbia
- R. Senal

MERCI DE VOTRE ATTENTION

Questions?

- o. Alaba
- D. Baux
- J. C. Delmas
- T. Guignard
- F. Vandermeeren
- C. Van Goethem

s-cabelloaguilar@chu-montpellier.fr

https://github.com/SimCab-CHU/MobiCT