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RNA-sequencing to improve MD diagnosis 
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Objectives

How to improve the diagnosis of mitochondrial diseases ?
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From Labory et al. Front Mol Biosci.2020
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OUTRIDER1 OutPyR2

Autoencoder

Statistical test

Bayesian  model

1Brechtmann et al. Am. J. Hum. Genet. 2018

è OUTRIDER does not work on small data è Tested only on a subset of real data

Statistical test

2Salkovic et al. Journal of Computational Science,.2020
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How to identify AGEs for small cohorts ?
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How to identify AGEs for small cohorts ?

ABEILLE1
a novel method for 

ABerrant Expression 
Identification 

empLoying machine 
LEarning from 

sequencing data

Supports any kind of OMICS data

Adaptable Structure

Improvement of model performances

Variational Autoencoder

Decision tree

1Labory et al. Bioinformatics 2022

Methods to identify AGEs
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The autoencoder
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How to use AE to identify AGEs ?
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Difference between ABEILLE and OUTRIDER
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Difference between ABEILLE and OUTRIDER

ABEILLE

To compare input and output of the VAE to find AGEs

OUTRIDER Statistical test to find AGEs 
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Supervised phase – Creation of semi-synthetics datasets

54 tissue 1000 individuals 56 200 transcripts
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Supervised phase – Creation of semi-synthetics datasets

1 tissue 504 individuals 56 200 transcripts

Generate computational AGEs 
by replacing randomly 10 000 

expression values

Repeat the process 20 times
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Supervised phase – To obtain the decision tree
To use VAE to generate reconstructed 

denoised counts
To compute metrics to assess

the reconstruction fidelity

To create a decision tree and identify thresholds for gene expression classification

Linear regression

Parameters calculated on each 
linear regression : 
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- Type error
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Supervised phase – To obtain the decision tree
To use VAE to generate reconstructed 

denoised counts
To compute metrics to assess

the reconstruction fidelity

To create a decision tree and identify thresholds for gene expression classification

Linear regression

Parameters calculated on each 
linear regression : 
- Dfbetas
- Hat
- Type error

Parameters calculated
for all genes in all
patients are used to
feed a decision tree
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3

2
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Gene A
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Unsupervised phase – gene expression classification
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Case study

119 patients with MD 
suspicion

(from Kremer et al. Nat 
Comm 2017)

ABEILLE
OUTRIDER
OutPyR

RNA-seq

DESeq2

Validation of 5 
candidate genes

in 6 patients

Goal : Compare ABEILLE to other methods
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Performances of the four tools on real dataset
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These observations rule out OutPyR as a tool for AGE identification in this context.  
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Performances of ABEILLE and OUTRIDER
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AGEs found by ABEILLE are more enriched in terms related to mitochondrial biology 
than the AGEs found by OUTRIDER.
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Validated pathogenic genes
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ABEILLE & OUTRIDER correctly classify the pathogenic genes as AGEs
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Validated pathogenic genes
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OUTRIDER classifies as AGEs two pathogenic genes that do not 
show aberrant expression (putative false positives)
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AGE detection on small dataset size
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AGE detection on small dataset size
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AGE detection on small dataset size
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Conclusion of part 1

ADVANTAGES LIMITATIONS

• ABEILLE identifies AGEs from RNA-seq
data without the need of replicates

• ABEILLE showed good performances on
small datasets

• The decision tree must be trained for
each different type of data

PERSPECTIVES
• Use a flexible model to work on any type

of data

• The choice of semi-synthetics datasets 
to feed the decision tree 

Introduction ABEILLE VIOLA Take home messages



We are developing a version 2 of ABEILLE : 

−0.8

−0.6

−0.4

−5.0 −2.5 0.0 2.5 5.0

AGE
No AGE

Divergence score

De
lta
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nt

DBSCAN : density based model Multi-omics analyses are now possible

Perspectives
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Table of contents

ABEILLE (ABerrant Expression Identification 
empLoying machine LEarning) to find 
candidate Aberrant Gene expression (AGEs)

1
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2 VIOLA (Variant prIOritization using LAtent space) 
to find candidate pathogenic genetic variants

Gen
omics

Tra
nscr

ipto
mics

Phen
omics



DNA 
extraction

Sequencing 

Bioinformatic
pipeline

Identification of genetic 
variants

Challenges : 

The variant can be anywhere in genetic
sequence (intron, exon, regulatory
sequence)

Variant poorly characterized in databases

1 different responsible variant for each 
patient

The variant is rare, i.e is present in less
than 1% of the population.

Identification of too many variants

Diagnosis of Mitochondrial Disease (MD) 
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DNA 
extraction

Sequencing 

Bioinformatic
pipeline

Identification of genetic 
variants

Challenges : 

The variant can be anywhere in genetic
sequence (intron, exon, regulatory
sequence)

Variant poorly characterized in databases

1 different responsible variant for each 
patient

The variant is rare, i.e is present in less
than 1% of the population.

Variant prioritization

Diagnosis of Mitochondrial Disease (MD) 
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Variant prioritization

Process of selecting and ranking genetic variants based on their potential significance or relevance 
to a specific phenotype or condition.

State-of-the-art tool : 

o Exomiser ranks genetic variants according 
to a combination of criteria : 
• variant frequency
• predicted pathogenicity
• known disease associations
• conservation
• functional impact
• phenotypic information

o Drawbacks :
• variants of a same gene have the same rank 

in Exomiser results
• Exomiser is trained on large databases

(SOTAT)
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VIOLA’s hypothesis

Introduction ABEILLE VIOLA Take home messages

The disease-responsible variant(s) are patient-specific and rare.
à unique combination of properties different from the rest of the patient variants.

The putative disease variants for MD are outliers of each patient variants’ distribution. 
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VIOLA’s workflow

Variant annotation

Score transformation

Outlier detection

Phenotype
integration

VIOLA 
score (VS)

VCS

89’000 variants

89’000 variants
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16
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89’000 variants

30’000 variants

16
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3’000 variants

1
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Creation of the VIOLA combined score (VCS)

VCS = 0.5 ( VS + transcriptomics + uniqueness ) + 0.01 ( known gene + artifact ) 

VIOLA SCORE

Transcriptomics 
data

Variant uniqueness

Gene bearing the variant is already 
known to be involved in MD

image

Goal : Incorporate knowledge of mitochondrial diseases into VIOLA score

The variant is not an artifact
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Results on in-house cohort
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VIOLA results on the other patients

Patients

input

Variants selected by VIOLA
Variants in input
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VIOLA results on the other patients

Patients

input
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VIOLA selects 1% of input variants as potential candidates for MD



Can VIOLA find the responsible variant for positive patients?
Ranking

1st - 10th

11th - 40th

41th and +

VIOLA Combined
Score 

State Of the Art 
Tool

VIOLA Score

Scores
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Can VIOLA find the responsible variant for positive patients?
Patient A Patient B Patient DPatient C

Ranking

1st - 10th

11th - 40th

41th and +

VIOLA Combined
Score 

State Of the Art 
Tool

VIOLA Score

Scores

9th
8th

1st

14th

7th

1st

19th
18th
17th

34th

51th

19th

• Ranks with VCS are better than those with VS.
• VIOLA outperformed SOTAT in 3 out of 4 patients.
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VIOLA results
• Enrichment in genes already known to be involved in Mitochondrial disease (MD)
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Genes bearing top variants are more enriched in genes already known to be 
involved in MD than genes bearing bottom variants

Top variants (upper quartile) Bottom variants (lower quartile)

TRUE
FALSE

Involved in 
MD
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VIOLA results
• Enrichment in MitoCarta genes
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VIOLA results
P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

P11 P12 P13 P14 P15
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• Consequences of top variants 
(upper quartile)
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VIOLA results
• Consequences of bottom

variants (lower quartile)
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VIOLA find 2 potential candidates for 2 patients of the cohort

- C1QBP = Encodes a 
multifunctional protein found 
mainly in the mitochondrial 
matrix.

- Listed in MitoCarta and known 
to be involved in MD

- Similar symtoms for 2 other 
patients with a variant in 
C1QBP gene

- Intronic SNV in the C1QBP gene
- Heterozygous and rare (not listed in 

databases)
- Only found for this patient
- Ranked 7th with the VCS

GeneVariantClinic

• Case 1: 

- Male baby
- Died shortly after birth
- Dilated cardiomyopathy 

with elevated lactates
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VIOLA find 2 potential candidates for 2 patients of the cohort

- LAMA4 = Encodes extracellular 
matrix glycoprotein

- Known to be involved in 
cardiomyopathy

- Intronic SNV in the LAMA4 gene
- Heterozygous and rare (frequency of 

0.000014 in GnomAD)
- Only found for this patient
- Ranked 3th with the VCS

GeneVariantClinic

• Case 2: 

- Male adult (24 years old)
- Cardiomyopathy
- Transplanted

Introduction ABEILLE VIOLA Take home messages



Devolpment of a new model 
to prioritize genetic variants

Model based on the integration 
of genomics, transcriptomics 
and phenomics data

For 3 out of 4 patients, VIOLA 
outperfoms Exomiser by ranking the 
responsible variant in the top 20

VIOLA found 2 potential candidate 
variants for 2 patients in the cohort

Conclusion of part 2

Patient-specific tool, very 
convenient in a diagnostic context 
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Take Home Messages
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ABEILLE VIOLA Personalized medicine

Identification of Aberrant 
Gene Expression from 
transcriptomics data for small 
cohorts

a novel method for 
ABerrant Expression 

Identification 
empLoying machine 

LEarning from 
sequencing data

Supports any kind of OMICS data

Adaptable Structure

Improvement of model performances

The diagnosis of MD is 
complex, important to move 
as far as possible towards a 
personalized medicine 
approach

Prioritization of genetic 
variants potentially 
responsible for MD using 
latent space



Dr. Silvia Bottini

Thesis supervisors : 

Dr. Sylvie Bannwarth

Acknowledgements

Genetic team (CHU de Nice):
Dr. Samira Ait-El-Mkadem Saadi

M2P2 team (ISA, Sophia Antipolis)

Master students:
Youssef Boulaimen
Gwendal Le Bideau 
Jean Elisée Yao
Jasmine Kaur

Introduction ABEILLE VIOLA Take home messages


