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Objectives

How to improve the diagnosis of mitochondrial diseases ?
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Single Omics

Multi-omics

To improve
diagnostics and
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From Labory et al. Front Mol Biosci.2020
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Context : RNA-seq questions

2 approaches

/ \

Which genes are differentially

expressed between 2 groups ? Which genes are AGEs for each patient ?

Differential Expression (DE) Aberrant Gene Expression (AGE)

Control | Control |Control | Patient |Patient|Patient

Patient | Patient | Patient

—» Gene A=DE
— [Gene A;Patient 2] = AGE

—> Gene B =Normal gene
—> Gene B =Normal gene

— Gene C=DE
— [Gene C;Patient 1] = AGE

,@) Control group No control group

’@) Replicates No replicates

. 1
Tool: DESeq2 lLove et al. Genome Biology.2014
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Methods to identify AGEs

OUTRIDER?

OutPyR?

encoder decoder
Autoencoder ’ ‘

+

Statistical test I \

=» OUTRIDER does not work on small data

1Brechtmann et al. Am. J. Hum. Genet. 2018

2K
Bayesian model D—)E
0

+

Statistical test Jé \

=>» Tested only on a subset of real data

2Salkovic et al. Journal of Computational Science,.2020
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Methods to identify AGEs

How to identify AGEs for small cohorts ?

g ; ABEILLE! <2

Variational Autoencoder

Decision tree XjLx

lLabory et al. Bioinformatics 2022
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The aqutoencoder

the process that prod wee the reverse process
the “new features” Latent of an encoder
represewtatbow space

. : .
f e d \

(nitial data encoder decoder Encoded —
_. l - decoded data

encoded data

-

Dimensionality Reduction Denoising Sequence to sequence prediction

Compression Feature Extraction Generation Recommendation system
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How to use AE to identify AGEs ?

Input :
Gene expression
data from RNA-seq

fragment count patients

\_ m

genes

f-

AGE cawn be constdered as nolse

e

encoder

Output:
Gene expression data
reconstructed by the AE

- Reconstructed
fragment
count

Reconstruceted data are denotsed
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Difference between ABEILLE and OUTRIDER

d —  OUTRIDER == Statistical test to find AGEs

ABEILLE

!

To compare input and output of the VAE to find AGEs

-- + — -
= ]
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ABEILLE workflow

VAE Definition of metrics
To use VAE to generate\ To compute metrics to assess m
reconstructed denoised counts reconstruction fidelity
r - g0
| --

value

A

[ 1_expr ]g

Reconstructed

Input value

Definition of new
scores to compare
|_expr and R_expr

o5

° [ ]
[ R_expr ] é’ .
5 Divergence score

Delta count
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reconstructed denoised counts
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ABEILLE workflow

Definition of metrics

To compute metrics to assess the
reconstruction fidelity

S

value

Reconstructed

Input value

Definition of new
scores to compare
|_expr and R_expr

o8

Delta count

Classification

AGEs or no AGEs

T

Supervised

|

Semi-synthetics
data

[ ]
Divergence score

To classify gene expressions as

Unsupervised

|

Real data
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ABEILLE workflow

Classification

To classify gene expressions as \
AGEs or no AGEs
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Supervised

|
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Supervised phase — Creation of semi-synthetics datasets

1 tissue 504 individuals 56 200 transcripts
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» Generate computational AGEs
by replacing randomly 10 000

expression values

kf; = round(s,-2”7 +exp(N)oj )
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Supervised phase — Creation of semi-synthetics datasets

1 tissue 504 individuals 56 200 transcripts

& GTEX S
D *

- H B
» Generate computational AGEs »

by replacing randomly 10 000
expression values . .

k) = round(s;24/=P(N)e})

Repeat the process 20 times
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Supervised phase — To obtain the decision tree

. To use VAE to generate reconstructed T° compute metrics to assess
denoised counts the reconstruction fidelity
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Supervised phase — To obtain the decision tree

. To use VAE to generate reconstructed
denoised counts

nnnnnnnnnnnnnnnnnnnn

To compute metrics to assess
the reconstruction fidelity

T L

Divergence score

__Rexpr |

Delta count

@ To create a decision tree and identify thresholds for gene expression classification

Gene A
. Parameters calculated on each
€ o > ——» linearregression:
’
8 ot - Dfbetas
8 s , )
© e ® Injected AGE Hat
o R No AGE
i - Type error

Divergence score

Linear regression

To be done for each gene
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Supervised phase — To obtain the decision tree

. To use VAE to generate reconstructed
denoised counts

llllllllllllllll

el

. To compute metrics

to assess

the reconstruction fidelity

—

R_expr

Delta count

Divergence score

@ To create a decision tree and identify thresholds for gene expression classification

Gene A
. Parameters calculated on each
€ o > ——» linearregression:
’
8 ot - Dfbetas
8 s , )
© e ® Injected AGE Hat
o R No AGE
i - Type error

Divergence score

Linear regression

To be done for each gene

Parameters calculated
for all genes in all
patients are used to
feed a decision tree

o dfbeta > 1.1 yes
Divergence score 2 11 Hat=0.2

Delta count 2 2.4 T

Divergence score 2 6.6

No
AGE

This decision tree will be used in the unsupervised phase for

gene expression classification
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ABEILLE workflow

Classification

To classify gene expressions as \
AGEs or no AGEs
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Real data
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ABEILLE

Unsupervised phase — gene expression classification

‘ To use VAE to generate reconstructed

denoised counts

. To compute metrics to assess

)

‘ Classification of gene expressions as AGEs or no AGEs

Gene A

.! g/i;
s
o’/

Divergence score

Linear regression

Parameters calculated on each
linear regression

the reconstruction fidelity

|_expr

o dfbeta = 1.1 S

Delta count

4%

Divergence score

Delta count

Gene A

v
@ |dentified AGE

PY ® No AGE

Divergence score
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Unsupervised phase — gene expression classification

‘ To use VAE to generate reconstructed
denoised counts

. To compute metrics to assess
the reconstruction fidelity

)

‘ Classification of gene expressions as AGEs or no AGEs

|_expr

Delta count

4%

Divergence score

Delta count

Gene A

.! ;/i;
s
o’/

Divergence score

Linear regression

Parameters calculatedoneach |
linear regression

o dfbeta = 1.1 S

Delta count

Gene A

v
@ |dentified AGE

PY ® No AGE

Divergence score

UTO be done for each gene
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Case study

119 patients with MD

Validation of 5
suspicion - - candidate genes
(from Kremer et al. Nat - in 6 patients
Comm 2017)

2N RNA-seq

Goal : Compare ABEILLE to other methods

ABEILLE

== OUTRIDER
m— QUtPYR

DESeq?2
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Performances of the four tools on real dataset

500 15000
L
-
o 400 r12000
wn 0O
w <t =
O m‘ c
ABEILLE < 5 3
B 0O 300 9000 O &
OUTRIDER C c o
S 5 < 0
DESeq?2 g 3 -3 :—;
m= OutPyR = £ 200 r6000 @)
E wn
Q
~
100 3000
of" 0
Patients

These observations rule out OutPyR as a tool for AGE identification in this context.
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Performances of ABEILLE and OUTRIDER

301
(%)
£ 25
]
& 20
OUTRIDER °
()] 15
o)
(T 5
ABEILLE n DESeq2 OUTRIDER n DESeq? 51 |
A % X 3 o & &
¥ ¢ &L &SP LS
SN R > S o
DE Seqz C)\\ . 0@ Q&OO QO < \}(\0 (\\\O ) \%Q(b‘ ?\&O Q(\Q)
Q O ¥ &L S & &
(o14] Oq "DS 00 ’& o o3 {0’%
o) S & & & ¢ F e
6 OQ)\ OQ\ OQO QQ) *QO Q)Q\
= oL o N
@) &

AGEs found by ABEILLE are more enriched in terms related to mitochondrial biology
than the AGEs found by OUTRIDER.
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ABEILLE

Validated pathogenic genes

Validated
pathogenic Detected by ABEILLE OUTRIDER
genes
MGST1 AGE v v ABEILLE & OUTRIDER correctly classify the pathogenic genes as AGEs
TIMMDC1 AGE v v
MCOLN1 AGE v v
10 MGST1 10 TIMMDC1 10 MCOLN1
5 5 5
Y o
0 .$ 0 . 0 :3
O MUC1365 MUC1361 _" &%
MUC13%e *® MUC1344’ °
-5 -5 ) -5
-20 -10 0 10 -20 -10 0 10 =20 -10 0 10

divergence score



Validated
pathogenic
genes

ALDH18A1

CLPP

delta count

Detected by ABEILLE OUTRIDER

10

MAE

AS

ABEILLE

Validated pathogenic genes

X v
X v
ALDH18A1

OUTRIDER classifies as AGEs two pathogenic genes that do not
show aberrant expression (putative false positives)

10

-5

-10

10
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AGE detection on small dataset size
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AGE detection on small dataset size
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AGE detection on small dataset size
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ABEILLE

AGE detection on small dataset size
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AGE detection on small dataset size

ABEILLE OUTRIDER

co oo ~ N O

Number of validated
pathogenic candidates

10
Number of datasets

110 & 90 60 30 20 10 110 @ 90 60 30 20 10

Number of samples

The performances of ABEILLE do not depend on the number of samples
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Conclusion of part 1

ADVANTAGES

ABEILLE identifies AGEs from RNA-seq
data without the need of replicates

ABEILLE showed good performances on
small datasets

LIMITATIONS

e The decision tree must be trained for
each different type of data

N

&

ABEILLE

* The choice of semi-synthetics datasets
to feed the decision tree

PERSPECTIVES

Use a flexible model to work on any type
of data

A




ABEILLE

Perspectives

We are developing a version 2 of ABEILLE :

DBSCAN : density based model | mmmp  Multi-omics analyses are now possible
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® AGE
® No AGE

-0.61

Delta count

-0.8

50 25 00 25 50

Divergence score
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Diagnosis of Mitochondrial Disease (MD)

Challenges :

VIOLA

The Vv rinnt cran ha anmumaihora in aonaotic
sequel Dy
sequel N -

i '

The vi

TT than 1

Variant prioritization

o T

@ Variant poorly characterized in databases

@ @ 1 different responsible variant for each

{.én {,Qh ﬁQh patient

Identification of genetic
variants




VIOLA

Variant prioritization

Process of selecting and ranking genetic variants based on their potential significance or relevance g 1
to a specific phenotype or condition. EI

BTN
State-of-the-art tool : FX(OMISER
(SOTAT)
o Exomiser ranks genetic variants according o Drawbacks :
to a combination of criteria : e variants of a same gene have the same rank
* variant frequency in Exomiser results
* predicted pathogenicity * Exomiser is trained on large databases

* known disease associations
* conservation

e functional impact

* phenotypic information



VIOLA

VIOLA's hypothesis

The disease-responsible variant(s) are patient-specific and rare.
-> unique combination of properties different from the rest of the patient variants.
The putative disease variants for MD are outliers of each patient variants’ distribution.
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89’000 variants
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89’000 variants
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89’000 variants
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30’000 variants
[ [ ]]

3’000 variants
[ [ [ ][]

500 variants
[ | ||

500 variants
[ [ [ ]

VIOLA’s workflow

Phenotype
integration

VIOLA
score (VS)

VIOLA




VIOLA

Creation of the VIOLA combined score (VCS)

Goal : Incorporate knowledge of mitochondrial diseases into VIOLA score

VIOLA SCORE

uniqueness

(o dd

Varian

Transcriptomics

/ data
\ Gene bearing the variant is already
/ known to be involved in MD

The variant is not an artifact

XA

VCS = 0.5 ( VS + transcriptomics + uniqueness ) + 0.01 ( known gene + artifact )
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Results on in-house cohort
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VIOLA results on the other patients
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VIOLA results on the other patients
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VIOLA results on the other patients

input output
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[] Variantsin input
B Variants selected by VIOLA

VIOLA selects 1% of input variants as potential candidates for MD
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Ranking
. 15t - 10th
11th - 40th

41th and +

Scores

VIOLA Score (]

VIOLA Combined
Score *

State Of the Art A
Tool



VIOLA
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Can VIOLA find the responsible variant for positive patients?
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e Ranks with VCS are better than those with VS.
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Can VIOLA find the responsible variant for positive patients?

Patient A Patient B Patient C Patient D
o o
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34th
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VIOLA Combined
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A
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41th and +

Ranks with VCS are better than those with VS.
VIOLA outperformed SOTAT in 3 out of 4 patients.
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VIOLA results

* Enrichment in genes already known to be involved in Mitochondrial disease (MD)

Top variants (upper quartile) Bottom variants (lower quartile)

100% A
Involved in
- 5%.
I TRUE
] 0 [] FALSE
- 5%.
= ~ 0%- ~
P2 P4 P2

P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
patient patient

100% A

~

75%

50%

(o))

n

25%

0%

Genes bearing top variants are more enriched in genes already known to be
involved in MD than genes bearing bottom variants
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VIOLA

VIOLA results

e Enrichment in MitoCarta genes

Top variants (upper quartile) Bottom variants (lower quartile)

P2 P7

P8 P9 P10 P11 P12 P13 P14 Pi5 P16 P17 P18 P19 P20 P9 P10 P11 Pi2 P13 P14 Pi5 P16 P17 P18 P19 P20
patient patient

Mitocarta
gene

B TRUE
I FALSE

Genes bearing top variants are more enriched in MitoCarta genes than genes bearing bottom variants
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VIOLA results
P1 P2 P3
P8

P13

* Consequences of top variants
(upper quartile)

Consequence
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* Consequences of bottom
variants (lower quartile)

VIOLA

VIOLA results
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VIOLA find 2 potential candidates for 2 patients of the cohort

e (Casel:

Clinic @ Variant& Gene/_\é\-'

- Male baby - Intronic SNV in the C1QBP gene - C1QBP = Encodes a

- Died shortly after birth - Heterozygous and rare (not listed in multifunctional protein found

- Dilated cardiomyopathy databases) mainly in the mitochondrial
with elevated lactates - Only found for this patient matrix.

- Ranked 7t with the VCS - Listed in MitoCarta and known

to be involved in MD

- Similar symtoms for 2 other
patients with a variant in
C1QBP gene



VIOLA

VIOLA find 2 potential candidates for 2 patients of the cohort

* (Case 2:
Clinic @ Variant& Gene\§§\-'
® _ Maleadult (24 years old) - Intronic SNV in the LAMA4 gene - LAMA4 = Encodes extracellular
- Cardiomyopathy - Heterozygous and rare (frequency of matrix glycoprotein
- Transplanted 0.000014 in GnomAD) - Known to be involved in
- Only found for this patient cardiomyopathy

- Ranked 3th with the VCS
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Conclusion of part 2

Patient-specific tool, very
convenient in a diagnostic context

L

T
For 3 out of 4 patients, VIOLA

7/
Model base.d on the mt.egratlf)n . outperfoms Exomiser by ranking the
of genomics, transcriptomics ‘ . .

) / \ responsible variant in the top 20
and phenomics data / \

\

I \\V/

€E ‘ VIOLA found 2 potential candidate

variants for 2 patients in the cohort

Devolpment of a new model
to prioritize genetic variants



ABEILLE

Identification of Aberrant
Gene Expression from
transcriptomics data for small
cohorts

LN

&

ABEILLE

Take Home Messages

Take home messages

=

Personalized medicine

The diagnosis of MD s
complex, important to move
as far as possible towards a
personalized medicine
approach
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