Reference genomes and Gene models Impact on variant interpretation

Equipe Bioinformatique CHU de Lille

Part 1 - Reference Genome

- 1. The need of a reference
- 2. Do you speak reference genomes?
- Human reference genome build : a 3
 billion pieces puzzle
- 4. One given version, but so many flavors
- 5. Impact on data analysis

The need of a reference

Comparing genome sequences

Use of a common standard

The need of a reference

Reference genome sequence should be:

- Representative of the human population diversity
- Each segment = most commonly observed across available individual genomes.
- No one's genome, and hopefully everyone's.

Reference genome construction

Reference genome construction

Reference genome construction

Scaffolds : created by chaining contigs together using additional information about the relative position and orientation of the contigs in the genome.

Reference genome construction

Reference genome construction

After chromosome assembly, some scaffolds remain.

These are specific cases:

chromosome assembly, some scanous remain

representation

Top-level Assembly =

Assembled chromosomes

An assembly is never perfect, but in constant progress...

Patches = assembly updates, not disrupting the chromosome coordinates

An assembly is never perfect, but in constant progress...

Patches release # Minor release

GRCh37.p1 => GRCh37.p2 => ... GRCh37.p12 => GRCh37.p13

Genome assembly release # Major release

GRCh37 => GRCh38

One given version, but so many flavors

Flavor	Source	Name	Unplaced contigs	Unlocalized contigs	Alternate loci	mitochondria	Epstein-Barr virus	decoy sequences	Remarks
GRCH		GRCh37	No canonical name	No canonical name	No canonical name	Maintained by Mitomap, distributed for convenience	×	×	
UCSC	GRCh37	hg19	chrUn_gl000 212	chr1_gl00019 1_random	chr6_apd_ hap1	NC_001807 (from build 36)	*	★	Chromosome names start by "chr" PAR regions on chrY are hard masked
Ensembl	GRCh37. p13	Ensembl API release 75 Homo_sapiens.GR Ch37.75.dna.prima ry_assembly.fasta. gz	GL000211.1	GL000191.1	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	*	*	Chromosome named "1" to "22", "X", "Y" and "MT"
1000 genomes project phase I & III	GRCh37. p2	hs37 g1k_v37 b37 human_g1k_v37.fas ta.gz	GL000211.1	GL000191.1	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	*	★	"1" to "22", "X", "Y" and "MT"

One given version, but so many flavors

Flavor	Source	Name	Unplaced contigs	Unlocalized contigs	Alternate loci	mitochondria	Epstein-Barr virus	decoy sequences	Remarks
1000 genomes project phase II	GRCh37. p4	hs37d5 b37+decoy +herpes _{hs37d5.fa.gz}	GL000211.1	GL000191.1	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	NC_00 7605	hs37d5 ss	pseudo-autosomal regions are hard-marked on Y chromosome
Illumina MiSeq Reporter + BSO	hg19	hg19	*	*	✗	NC_001807 (from build 36)	*	×	hg19 without unplaced/unlocaliz ed contigs nor alternate loci
lon Torrent	hg19	hg19	*	*	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	*	*	hg19 without unplaced/unlocaliz ed contigs nor alternate loci
GATK Bundle	GRCh37. p2	b37 + decoy	GL000211.1	GL000191.1	×	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	×	hs37d5 ss	"1" to "22", "X", "Y" and "MT"

ALT contigs : Mapping quality zero for reads mapped in the flanking sequences.

Sensitivity of variant calling Σ

ALT-aware mapper

	p25.1 p24.1 p22.3 p22.2 p21.32 p21.1 p12.3 p12.1 q11.1 q13 q14.1 q14.3 q16.1 q16.3 q21 q22.1 q22.32 q23.2 q24.1 q24.3 q25.2 q26 q27
	▲ 178 bp 178 bp ▲ 15 580 bp 33 405 600 bp 33 405 620 bp 33 405 640 bp 33 405 660 bp 33 405 700 bp 33 405 720 bp 33 405 740 bp 3 1
DI1042_bwa_hgrnateLoci.vcf	No Variants Fr 🔮 D11042_bwa_hg19_AlternateLoci.bam
D11042 D11042_bwa_hg19_AlternateLoc m Coverage	8-405 Read name = NB551082:333:H5J2VBGXB:1:11207:7285:9266 Image: Comparison of the second
D11042_bwa_hg19_AlternateLoc m	Mapping = Primary @ MAPQ 0 Reference span = chró:33 405 594-33 405 744 (+) = 151bp Cigar = 151M
DI1042_illumina_igenome.vcf	SDI1042_illumina_igenome.bam
DI1042PETROWSKITIMEO DI1042_illumina_igenome.bam rage	Read name = NB551082:333:H5J2VBGXB:1:11207:7285:9266
D11042_illumina_igenome.bam	Read length = 151bp Mapping = Primary @ MAPQ 60 Reference span = chr6:33 405 594-33 405 744 (+) = 151bp Cigar = 151M
Sequence 🗕	
RefSeq Genes	SASGDTVFWGEHFEFNNLPAVRALRLHLYRDSDKKRKKDKAGYVGLVTVPVATLAGRHF SYNGAP1
hg19_Alt_Haplotypes.bed	chifi sato han7

Multi-placed sequences : Pseudo-autosomal regions (PARs).

If placed on both chrX and chrY, standard pipeline not be able to call any variants in PARs.

Solution = hard mask PARs on chrY.

Not using the rCRS mitochondrial sequence (NC_012920.1)

NC_001807 : wrong sequence length + 2 bp insertion

Nucleotide Position	1981 CRS (Anderson) 🧿	1999 rCRS (Andrews) 💿	Remarks
263	A	А	rare polymorphism
<mark>311-31</mark> 5	CCCCC	CCCCC	rare polymorphism (5C instead of 6C)
750	A	A	rare polymorphism
1438	A	A	rare polymorphism
3106-3107	СС	С	error
3423	G	т	error
4769	Α	A	rare polymorphism
4985	G	A	error
8860	A	A	rare polymorphism
9559	G	С	error
11335	т	С	error
13702	G	С	error
14199	G	Т	error
14272	G	С	error (bovine)
14365	G	С	error (bovine)
14368	G	С	error
14766	т	С	error (HeLa)
15326	A	A	rare polymorphism

7 nucleotides as rare polymorphisms + 11 corrected errors

Decoy sequences =

- sequences derived from HuRef, Human Bac and Fosmid clones and NA12878
- known true human genome sequences which are not in the reference genome sequence.

- many reads will quickly find a very confident alignment in the decoy
- If absent, reads would otherwise map with low quality on the reference genome sequence

Comparing/Combining your own data with external files from collaborators

ERROR MESSAGE: Input files reads and reference have incompatible contigs: Found contigs with the same name but different lengths: ##### ERROR contig reads = chrM / 16569 ##### ERROR contig reference = chrM / 16571. ##### ERROR reads contigs = [chr1, chr2, chr3, chr4, chr5, chr6, chr7, chr8, chr9, chr10, chr11, chr12, chr13, chr14, chr15, chr16, chr17, chr18, chr19, chr20, chr21, chr22, chrX, chrY, chrM] ###### ERROR reference contigs = [chrM, chr1, chr2, chr3, chr4, chr5, chr6, chr7, chr8, chr9, chr 10, chr11, chr12, chr13, chr14, chr15, chr16, chr17, chr18, chr19, chr20, chr21, chr22, chrX, chr Y, chr1_gl000191_random, chr1_gl000192_random, chr4_ctg9_hap1, chr4_gl000193_random, chr4_gl000194 _random, chr6_apd_hap1, chr6_cox_hap2, chr6_dbb_hap3, chr6_mann_hap4, chr6_mcf_hap5, chr6_gbl_hap 6, chr6 ssto hap7, chr7 ql000195 random, chr8 ql000196 random, chr8 ql000197 random, chr9 ql000198 _random, chr9_gl000199_random, chr9_gl000200_random, chr9_gl000201_random, chr11_gl000202_random, chr17_ctg5_hap1, chr17_g1000203_random, chr17_g1000204_random, chr17_g1000205_random, chr17_g10002 06_random, chr18_g1000207_random, chr19_g1000208_random, chr19_g1000209_random, chr21_g1000210_ran dom, chrUn_gl000211, chrUn_gl000212, chrUn_gl000213, chrUn_gl000214, chrUn_gl000215, chrUn_gl00021 6, chrUn_gl000217, chrUn_gl000218, chrUn_gl000219, chrUn_gl000220, chrUn_gl000221, chrUn_gl000222, chrUn gl000223, chrUn gl000224, chrUn gl000225, chrUn gl000226, chrUn gl000227, chrUn gl000228, ch rUn_g1000229, chrUn_g1000230, chrUn_g1000231, chrUn_g1000232, chrUn_g1000233, chrUn_g1000234, chrU n gl000235, chrUn gl000236, chrUn gl000237, chrUn gl000238, chrUn gl000239, chrUn gl000240, chrUn g1000241, chrUn_g1000242, chrUn_g1000243, chrUn_g1000244, chrUn_g1000245, chrUn_g1000246, chrUn_g1 000247, chrUn g1000248, chrUn g1000249]

goutham atla @Geek_y The moment when GATK complains about contigs order #Bioinformatics #GATK #NGS pic.twitter.com/OxVAb5ZyWH

Part 2 - Gene Models

- 1. GeneModels : RefSeq, GENCODE
- 2. Comparison between the 2 gene models
- 3. We all live in a "NM_ world"
- 4. Which one to choose?

RefSeq Geneset

RefSeq: NCBI Reference Sequence Database

A comprehensive, integrated, non-redundant, well-annotated set of reference sequences including genomic, transcript, and protein.

- 1. Widely used gene set produced by the NCBI,
- Has significant manually annotated content, but much less than GENCODE (<u>~45%</u> of transcripts are listed as MODEL),
- 3. Transcripts are named as:
 - a. NM: Manually curated, protein-coding transcripts,
 - b. NR: Non-coding transcrips,
 - c. XM: Predicted protein-coding models.
- 4. ongoing curation by NCBI staff and collaborators, with reviewed records indicated

GENCODE Geneset

- 1. Goal : create reference gene annotations for the **ENCODE** project,
- Comprehensive +++ (e.g. include pseudogenes, IncRNAs, short RNAs, protein-coding transcripts),
- 3. Extensive manual annotation by the HAVANA group, as well as computational annotation.
- 4. $\sim 93.4\%$ of the annotations involve manual annotation
- 5. Under constant validation by many groups in the consortium.
- 6. Default annotation set used by the <u>Ensembl</u> project.

HUMAN GENCODE 30 (08.04.19)

GENCODE vs RefSeq Genesets

Category	GENCODE	RefSeq
PURPOSE	Enhancing and extending the annotation of all evidence-based gene features in the human genome at a high accuracy	Providing a comprehensive, integrated, non-redundant, well-annotated set of sequences (genomic, transcript and protein).
ANNOTATION The process of finding and designating locations of individual genes and other features on raw DNA sequences	 Primary transcriptomic data aligned to the reference genome to determine transcript structure and CDSs. + Manual annotation : use of datasets that capture TSS and transcript 3' ends, epigenetic and transcription factor binding data as well as cross-species conservation 	Well-supported and biologically valid transcripts reviewed by RefSeq curators at the NCBI. RefSeq transcripts are annotated independently of the genome and based upon the mRNA sequence alone. Curated transcripts aligned to the genome sequence and combined with additional computational models
SEQUENCE	GENCODE sequences always match the genome reference assembly.	RefSeq sequences don't necessarily match the genome reference assembly.

Impact of Gene Model on variant annotation

60

50

40

30

20

10

0

CDS

% total non-concordant variants

Larger source of difference between consequence predictions : Unique variants

Proportion of discordant calls :

Dataset	GENCODE Comprehensive vs RefSeq NXR
1000 Genomes (WGS + WES)	3.1 %
ESP (WES only)	1.7 %

CDS variants show high (>90%) concordance in all conditions

other

splice

- 'Other' variants show high discordance (up to 56%).
- Approximately 30% of LoF variant calls are in conflict.

LOF

We all live in a "NM_ world"

From The Clinical Significance of Transcript Alignment Discrepancies presented by Reece Hart at Human Variome Project Meeting 2014, Paris

We all live in a "NM_ world"

When transcript alignment discrepancies lead to discordant exon coordinates

https://blog.goldenhelix.com/using-the-grch38-reference-assembly-for-clinical-interpretation-in-vsclinical-webcast-qa/ https://blog.goldenhelix.com/refseq-genes-updated-to-ncbi-provided-alignments-and-why-you-care/

We all live in a "NM_ world"

"gap" between the NM_006331 transcript's RNA sequence and the human genomic sequence.

So which transcript set should we choose?

Available GENCODE and RefSeq transcripts for the KCNT1 gene

Novel transcription start site exons and novel internal exons not present in RefSeq.

Not an isolated case.

No Best Choice...

"When choosing an annotation database, researchers should keep in mind that no database is perfect and some gene annotations might be inaccurate or entirely wrong."

Assessing the impact of human genome annotation choice on RNA-seq expression estimates. Wu *et al.* 2013 BMC Bioinformatics. 2013;14(Suppl 11):S8. doi: 10.1186/1471-2105-14-S11-S8.

There is still hope...

Our new joint transcript initiative : The Matched Annotation from the NCBI and EBI (MANE) project

12TH OCTOBER 2018 BY ASTRID (OUTREACH) · COMMENTS OFF

one well-supported transcript per protein-coding locus. All transcripts in the MANE set will perfectly

align to GRCh38 and will represent 100% identity (5'UTR, coding sequence, 3'UTR) between the

This blog post is a joint contribution by Joannella Morales, Jane Loveland, Adam Frankish, Fiona Cunningham and Astrid Gall.

We are pleased to introduce the Matched Annotation from the NCBI and EMBL-EBI (MANE) project. This new joint initiative between EMBL-EBI's Ensembl project and NCBI's RefSeq project aims to release a genome-wide transcript set that contains

other improvements!

***** 0 8 Votes

There's a new RefSeg annotation available for the human genome, and it's quite an update!

el Ensembl Blog	
NEWS ABOUT THE ENSEMBL PROJECT AND ITS GENOME BROWSER	
ABOUT US	
WORKSHOPS	
KNOWN BUGS	
CONTACT US	
Search	
CATEGORIES	

We are making 'MANE' changes...

16TH APRIL 2019 BY EMILY (OUTREACH) · COMMENTS OFF

The RefSeq column on our gene pages has changed.

We're moving towards a more unified gene-set with RefSeq, with biologically important transcripts being highlighted as MANE. This means displays you're used to seeing will be updated to reflect these changes, and this may affect the way you have been working with Ensembl.

On a gene page, you'll see the table of transcripts now has the column RefSeq match. In human GRCh38 this shows a versioned RefSeq NM which is a 100% match to the Ensembl transcript, including sequence, structure and UTRs. These transcripts will have the flag MANE Select v0.5 in the Flags column in this table

CONCLUSION

Take home message :

Reference Genome and Gene Model do impact your NGS Workflow

Keep in mind :

- transcript equivalence

- strength and weakness of both Reference Genome and Gene Model you rely on