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WHO ARE WE

15 ONGOING PROJECTS
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PREDICTING BIOPHYSICAL
CHARACTERISTICS OF PROTEINS
FROM THEIR AMINO ACID SEQUENCE

..FYG...

ASSESSING THE LIKELY EFFECT OF
AMINO ACID MUTATIONS ON A
PROTEIN (AND THE ORGANISM IT IS
IN)

Structural Bioinformatics

Structural Bioinformatics

UNDERSTANDING HEMATOPOIESIS IN
LIGHT OF LEUKEMIA AND OTHER ‘
HEMATOLOGICAL DISEASES -

b, '/w"

MODELING THE DYNAMICS OF
MICROBIAL COMMUNITIES

Systems Biology

Systems Biology

DETERMINING SIMILARITY BETWEEN
PROTEINS IN BIOPHYSICAL SPACE.

Structural Bioinformatics

MATHEMATICS OF METASTATIC
INEFFICIENCY (TELEVIE PROJECT)

Systems Biology

DEVELOPING QUANTITATIVE MODELS
FROM GENE REGULATORY NETWORKS
TO MICROBIAL COMMUNITIES

Systems Biology

BRUSSELS INTELLIGENT ICT FOR
GENOMIC HIGH THROUGHPUT
ANALYSIS (BRIGHTANALYSIS)

Bioinformatics Applications, Genomics and Genetic

Bioinformatics

FRIA ; CROSSING THE MONOGENIC
BARRIER: DEVELOPMENT OF
CLINICALLY COMPETENT METHODS
FOR NEURODEVELOPMENTAL
DISEASES

Genomics and Genetic Bioinformatics

ARC : DECIPHERING THE GENETIC
ARCHITECTURE FROM OLIGO- TO
POYLYGENIC IN
NEURODEVELOPMENTAL DISEASES.

Genomics and Genetic Bioinformatics




GENETIC DISEASES: SEEKING UNDERSTANDING

30 million people
affected by a rare disease
In Europe

Many have genetic origin

Difficult to associate a phenotype with genetic cause

Source: EURORDIS



MACHINE LEARNING FOCUS ON MONOGENIC

MONOQJENIC\  Machine learning
focus here
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Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.



THE PROCESS OF MACHINE LEARNING

Learning Algorithm
Dataset

Training Data Train Model
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Feature Engineering % ﬁ @
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Data cleaning % — —
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New Data Score Model Evaluate Model

Source: https://towardsdatascience.com



DIFFERENT MACHINE LEARNING ALGORITHMS

Image

Structure Classification
Discovery Feature

@ Elicitation

Customer
Retention

Fraud
Detectio

Meaningful
compression

DIMENSIONALLY CLASSIFICATION Diagnostics

REDUCTION

Big data °
Visualisation

® Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING ® Predictions
CLUSTERING
rargetted MACHINE ® Process
Marketing Optimization
LEARNING
° [
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions ® ® Robot Navigation

Game Al @ ® Skill Aquisition
[
Learning Tasks

Source: https://towardsdatascience.com



THE PROCESS OF MACHINE LEARNING

Learning Algorithm
Q)

Dataset
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g Training Data Train Model
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New Data Score Model Evaluate Model

Source: https://towardsdatascience.com



INTERPRETABILITY IS IMPORTANT

Interpretability methods produce explanations @

------------------

- ’ r
ﬁ>ﬂ white : ‘ Linear Regression
|

Ante-hoc interpretability
= ==p 1. Train a simple (high bias) model
2. Model is intrinsically interpretable

box

1 . o
' ‘ Decision Tree !
A

-----------------

‘ K Nearest Neighbors

. Random Forests

Interpretability

‘ Neural Networks

>
>

Performance

An interpretable model can be more
fair, reliable and trustworthy.

Source: https://www.infoq.com/presentations/machine-learning-gdpr/



MACHINE LEARNING FOCUS ON MONOGENIC

MONOQJENIC\  Machine learning
focus here
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Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.



MACHINE LEARNING IN VARIANT PREDICTION

“Normal” LCAGTQCLGGTG... Q/A\\/

“Disease” WAGT GTG... <\E)\/
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MACHINE LEARNING IN GENE PREDICTION

PROTEIN-PROTEIN

¥ Expression TEXT INTERACTION
@ Sequence
§ Phenotype
Homology
Regulation
v D.g 620
isease I
X Probabilities > ‘;W
Chemical A ToM Posted
»
2 Components AsuspecT x ® & Toppcene Ephencered FUNCTIONAL
O rolysearch ANNOTATION
4.0* Endeavour ¥ Prioritizer
= SNPs3D
¥ &  Genepistiller PATHWAYS
@ Gentrepid
PGPMapper ¥ )
Dl
Bitola # »
aGeneApart GeneWanderer
GeneProspector

Source: Tranchevent, et al. (2011). Briefings in Bioinformatics. 12(1), 22.



FROM MONOGENIC TO OLIGOGENIC

MONOgEnNICy  Networks using a
univariate analysis
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Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.



NETWORKS: THE NODE TO EDGE APPROACH

BASED ON PPls, CO-EXPRESSION, PRESENCE OF SEVERE SNPs

FAH ESAM

APOH

TN AHSG



DIFFERENT APPROACH: FROM EDGES TO NODES

KNOWN OR PREDICTED DISEASE-CAUSING GENE PAIRS

ESAM

FAH ESAM
APOH
FAH
ESAM
APOH >
APOH

FAH

AHSG
TTN TTN o



DIFFERENT APPROACH: FROM EDGES TO NODES

BASED ON KNOWN OR PREDICTED KNOWLEDGE

FAH ESAM

APOH

TN AHSG



HYPOTHESIS 1:
Sufficient cases exist, where

mutations in two genes explain
better the phenotype of a patient
than a mutation in one gene alone.




DIDA: THE DIGENIC DISEASES DATABASE

Andrea Dorien Claudio
Gazzo Daneels Reggiani

bi-locus
variant combination

BBS2
XA

ATCAAGTACCG
\4
C

Bardet-Biedl syndrome


http://dida.ibsquare.be/

258 COMBINATIONS, 55 DIGENIC DISEASES

Source: http://dida.ibsquare.be
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Bardet-Bied| syndrome

Familial hemophagocytic lymphohistiocytosis

Familial long QT syndrome -

Kallmann syndrome

Alport syndrome

Non-syndromic genetic deafness

Usher syndrome

Oculocutaneous albinism

Primary ovarian insufficiency -

Familial idiopathic steroid-resistant nephrotic syndrome
Hypodontia

Congenital hypogonadotropic hypogonadism -
Congenital glaucoma

Cystinuria 4

CANDLE syndrome

Normosmic congenital hypogonadotropic hypogonadism
Familial isolated hypertrophic cardiomyopathy +
Charcot-Marie-Tooth disease

Epidermolysis bullosa simplex

Familial Mediterranean fever

MODY -

Retinitis pigmentosa -

Familial isolated dilated cardiomyopathy

Rare hereditary hemochromatosis

Familial hypercholanemia -

Arrhythmogenic right ventricular dysplasia +

Autosomal dominant progressive external ophthalmoplegia
Emery-Dreifuss muscular dystrophy

Young-onset Parkinson disease

Familial atrial fibrillation +

Hirschsprung disease -

Left ventricular non-compaction

Porphyria +

Familial exudative vitreoretinopathy -

0 10 20 30 40 50 60 70
s by
Genes I Digenic Combinations [l Variants
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THE COMBINATIONS PAGE IN DIDA

Gene A Gene B

A bi-locus
variant combination

Gene A Gene B
Allele1 Allele 2 Allele 1 Allele 2 i ) ) . .
ID * Name protein protein Zygosit Name protein protein Zygosit Disease name Oligogenic Familial Functional Gene relationship
yoosiy yoosiy (ORPHANET) effect evidence  evidence
change change change change
indirectly interacting,
thwa embership,
ddoo1 KCNQ1 p.(A341E) wild type Heterozygote KCNH2 N/A wild type Heterozygote Familial long QT syndrome  CO NES NO L] p,"‘ way mz.‘m ership
similar function, co
expression
. A indirectly interacting,
\ . . . Non-syndromic genetic
ddooz GJB3 p.N166S) wild type Heterozygote GJB2 p.L79Cfs"3) wild type Heterozygote deafnes TD YES NO 2 pathway membership,
ealrness
similar function
- indirectly interacting,
X . X Non-syndromic genetic
ddoo3 GJB3 p.(A194T) wild type Heterozygote GJB2 p.{L79Cfs"3) wild type Heterozygote TD YES NO 2 pathway membership,

deafness . .
similar function

indirectly interacting,
) i . Non-syndromic genetic
ddoo4 GJB3 p.(A194T) wild type Heterozygote GJB2 p.(H100Rfs"14)  wild type Heterozygote deafness ™D YES NO 2 pathway membership,
earness
similar function

Non-syndromic genetic

ddoos FOXl1 p.(G258E) wild type Heterozygote SLC26A4 p.E29Q) wild type Heterozygote deaf
eafness

D NES YES @ co-expression

Source: http://dida.ibsquare.be



OLIDA IS COMING SOON

BROWSE DOCUMENTATION REFI ICES STATISTICS

OLIDA

OLlgogenic diseases DAtabase Al’n au C h a r|0tte
Dillen Nachtegael

OLIDA is a curated database of oligogenic diseases and the variants in genes that are believed to cause these diseases. The combinations of variants that are contained in this
database have been identiefied by researchers as being the cause of certain genetic diseases. The database tables can be browsed and the litterature that identified a
combination can also be reviewed s on the data are available too. If a certain combination or publication you believe should be present in the database is missing, one
can submit new data by filling in the submission wizard. If you use data from this database in a publication please refer to the appropriate publications as proposed in the About

page.

Adapted for oligogenic cases

Adapted for CNVs

Improved paper curation

Faster data submission




MAIN TYPES OF BI-LOCUS COMBINATIONS

A bi-locus model explains
better the phenotype

' True Digenic

Monogenic + Modifier

4‘— Dual Diagnosis

Problem: 1/3 of the data is not classified with a bi-locus

effect @

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690




HYPOTHESIS 2:
It is possible to differentiate

between different types of bi-locus
combinations using machine
learning.




THE BI-LOCUS EFFECT PREDICTOR

1)
Andrea  Aziz Nassim
Gazzo Fouché Versbraegen

BBS2 MKKS

XOOOOOOOA XOOOOOOOA

ATCAAGTACCG TGCAACCCTGGAG
v v
C A

True Digenic

Monogenic + Modifier @

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



THE BI-LOCUS EFFECT PREDICTOR

USING A MULTI-LAYER ANNOTATION

allele 1

allele 2

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690

RecA, Ess in Mouse

Gene B

3SNO\ Ul SST ‘go9Yy

» [ 0.52, -10, ... , 0.82, 1 ]

Vector of 9 elements (features)



THE BI-LOCUS EFFECT PREDICTOR
A RANDOM FOREST MODEL ' % m

—— @ ¢

75 True Digenic 90 Monogenic + Modifier 75 Dual Diagnosis
combinations combinations combinations

node/feature test / \

KRAh KRR N
Sl

V

average final class @

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690




THE BI-LOCUS EFFECT PREDICTOR
A MODEL WITH GOOD PERFORMANCE ' ﬁ “
i 7, d i .IZ

It’s easier to differentiate dual molecular diagnosis from
the other two classes.

Specificity

Dual Molecular Diagnosis 0.8 0.79
Monogenic + Modifier 0.57 0.65
True Digenic 0.7 0.65

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



THE BI-LOCUS EFFECT PREDICTOR

DMDs DIFFERENTIATED (CADD, PATHWAY)
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690




THE BI-LOCUS EFFECT PREDICTOR
INTERPRETABILITY WITH GAME THEORY ! 2 “
i ™ i 7 ;/E

oﬁo Pay-off cooperative game using @ Reward: sensitivity,
{7 the set F of 9 features as agents o™ specificity

Testing all possible 22 - 1 feature coalitions S belonging to F

| sensitivity 6 aames th
‘ - X _ g , » reward v(S): the

TP 6 rewards geometric mean
v — specificity

A 4

Shapley value ¢ :
a relative value on how much an agent contributes to a

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



THE BI-LOCUS EFFECT PREDICTOR
INTERPRETABILITY WITH GAME THEORY ' ﬁ “
i 7, d i .IZ

oﬁo Pay-off cooperative game using @ Reward: sensitivity,
{117 all pairs of F features as agents o™ specificity

Testing all possible feature coalitions S of pairs F; and F;

| sensitivity 6 dames d v(S)- th
(< - X _ g S reward v(S): the

PIgar 6 rewards geometric mean
v — specificity

A 4

joint contribution y;;

A feature pair can be redundant, complementary or synergistic @

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



THE BI-LOCUS EFFECT PREDICTOR

INTERPRETABILITY WITH GAME THEORY

Feature interactions in the decision process,
measured using geometric mean

CADD1

o High synergy of
pathway with almost
any feature

CADD2
RecA
EssA

CADD3

o Synergy of CADD2
and CADD4 with
pathway and gene
recessiveness /
essentiality

CADD4

RecB

EssB

Pathway

b S o P P O P P
c}oo c}oo ?\e(a egﬁp‘ d&O C,POO Q&C ?‘(,‘9 Qa‘v‘&m\i

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



THE BI-LOCUS EFFECT PREDICTOR

CLUSTERING DIDA BI-LOCUS COMBINATIONS

http:/ /bespace.ibsquare.be/

| [ [ [
Bi-locus effect | | | | Features
O Jnknawn | | | | © CADD1
© True digenic
Modifier | | | | N ° (F‘;ADDg R
@ Dual molecular C ? © Recessive
diagnosis I | I | 3 o @ Essential A
Toggle classes by | I " | | .“ - ‘,_ ® CADD3
&
| e e — — — — — — — -0 e @ CADD4 |
clicking the dots | € ee ' | S| I b ® Recessive B
| i'”“‘ | ’ | | © Essential B
g UL @ Pathway
| o® " | | e, 8
| ® ® | &% | | | Toggle features by
clicking the dots
| I I I I
______ s A P
0® ®
I I I *o‘ I
I I I ] I
| I I I I
I | I I . I
| | | | o o2 e
@ Y [
_____________________ 5 — — e |- — — —5 =
I — + - %% c—..:. I
e \
| I I I ® ., ae |
| | | I Y7 a8e |
@
I I I I I
I [ [ I I
[ Ex: dd056, Alport syndrome, BBS2 | | | Chang_e area
Search for a sample, chbose with arrows, press ENTER to validate suggestion. ' size

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690


http://bespace.ibsquare.be/

HYPOTHESIS 3:
It is possible to differentiate
between disease-causing and

neutral combinations using
machine learning.




DIFFERENT APPROACH: FROM EDGES TO NODES

[ VarCoPP ]

FAH ESAM

APOH

TN AHSG



VARCOPP: THE PATHOGENICITY PREDICTOR

B4
Sofia
Papadimitriou

BBS2 MKKS
ATCAAGTACCG TGAACCCTGGG
A ———
C A
A 4
Neutral _
Disease-
causing

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690



VARCOPP: THE PATHOGENICITY PREDICTOR

THE DATA

1000 Genomes
A Deep Catalog of Human Genetic Variation

Dlgenic Diseases DAtabase

213 bi-locus 2500 individuals
combinations trillions of
combinations

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



VARCOPP: THE PATHOGENICITY PREDICTOR

MULTILAYER ANNOTATION

Biol. distance

\
Gene A Gene B

CADD1,

Hydr. diff
- Flex. diff CADD3
T v 0 2
S = » [ 0.52, -10, ... , 0.82, 1 ]
~ |
o (w)

CADD?2 CADD4 Vector of 11 elements (features)

Q

N .

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878




VARCOPP: THE PATHOGENICITY PREDICTOR

THE MODEL /%) am iker (varcorp )\
— — o
o wm 25% of proteome
£
“ 020 . e .
2 500x | = sampling of 200  |& 40 individuals per continent
o = combinations J.. degrees separation as DIDA
- |
Sample1 Sample2 Sample 3 Sample 500
= = = =
@ -— -— -— -—
5 VS VS VS VS
© = = = =
E L L — L — L
0 DIDA
S
2 \ 4
°
2
o
Classifier 1 Classifier 2 Classifier 3 Classifier 500
I_(Majority vote)—'
5 v v v
"é Support score Majority class Classification score
s % of classifiers disease-causing, median probability
© agreeing for the neutral among classifiers for
§ disease-causing the disease-causing
S
\

class class
{0 - 100} {0-1} / e

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



0.88 ACCURACY, 0.74 MCC

VARCOPP: THE PATHOGENICITY PREDICTOR
/ -

3 b
(O]
IS
x c
(O]
:5 28
[72] [&]
o o
< o 04 -+
=
|_
0.2 +
i ; 0 i I i I i
0 0.110.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate Recall

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



THE BI-LOCUS EFFECT PREDICTOR

INTERPRETABILITY WITH RANDOM FOREST

Q Q
X0

Q B [ 0.52, -10, ... , 0.82, 1]
YOO

node/feature test / \

m m £ARN

assignment to a class @

Neutral
Disease-

causing ©

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



INTERPRETABLE PREDICTIONS

VARCOPP: THE PATHOGENICITY PREDICTOR
/ -

0.20 — 1

0.15 — -

0.10 —

0.05 —

-0.05 —

-0.10 —

Feature contribution among all VarCoPP predictors

-0.15 —

-0.20 —

I | | [ | I | | | | I
Flex1 Hydr1 CADD1 CADD2 CADD3 CADD4 HI_A RecA HI_B RecB Biol_Dist

VarCoPP Features

. Preference for the disease-causing class

. Preference for the neutral class °

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



VARCOPP: THE PATHOGENICITY PREDICTOR

DIDA COMBINATIONS FORM AN S-PLOT

100
90 ,
80 o,

70 ’ predicted

[ ]

° . .
60 { disease-causing
50

400 predicted
300 heutral o

20 °

10 'V

Support score

0 0.489 0.978

Classification score e

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



VARCOPP: THE PATHOGENICITY PREDICTOR

TESTING WITH UNKNOWN 1KGP DATA

* Neutral test set 1IKGP digenic combinations

100
90
80

—TEE ]

1% FPs 99%-confidence
———1 Zzone

5% EPs 95%-confidence

70
60
50
40
30
20 g
10 X ’

Support score
e,

Zone

7% FPs

0 0.489

Classification score
Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878

0.978



VARCOPP: THE PATHOGENICITY PREDICTOR

TESTING WITH UNKNOWN DISEASE DATA

® Validation set of digenic combinations (95%-zone)
® Validation set of digenic combinations (99%-zone)

100 e G e s 99%-Zone

e erereerasrarrnranrannnrnnrnnnd 95%-zone

Support score
a1
o

0 0.489 0.978

Classification score

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



VARCOPP: THE PATHOGENICITY PREDICTOR

https://varcopp.ibsquare.be

Submit your variants | Sofia ' Nassim

You can either insert each variant manually with the six column boxes, or copy-paste a complete variant list directly in the white box (one Papad | m |tr|0u Ve rs braegen
variant at each line with tab or space delimited columns), or upload a VCF file.

Please also specify, if available, the gender information of the individual, as X-linked variants are handled differently between males and females.

Further information on how to upload your data is provided in the About page.

Sex:
Male 3

+ Vif file:

Choose file | No file chosen

CHROM |POS 10 REFERENCE | |ALTERNATIVE | | ZY

oM POSID REF ALT 2

Example VCF file:
Download

Example for copy-pasted variant list:
169621 . A - Heterozygous
2177054850 . C G Heterozygous

16 3254467 . CCTT C Heterozygous

X 107841975 . C A Homozygous

Submit

By clicking on the submit button, this page will start loading until the predictions are finished. The loading time can range between a couple of
seconds to several minutes, based on the amount of data you have uploaded.

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878



HYPOTHESIS 3:
Using pathogenicity predictions on

gene pairs we discover oligogenic
disease signatures with the use of

networks.




DIFFERENT APPROACH: FROM EDGES TO NODES

[ VarCoPP ]

FAH ESAM

APOH

TN AHSG
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ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

_ 4
i A Y _ ’
I & N

Alexandre Sofia Nassim Charlotte Simon
Renaux Papadimitriou Versbraegen Nachtegael Boutry

https://orval.ibsquare.be

ORVAL.: Oligogenic
Resource tor Variant
AnalLysIs

A platform for the prediction and exploration of candidate disease-causing oligogenic variant combinations

m Learn more »

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

Patient with > g Genome
disease f:};y) sequencing

AN
‘*“‘.’q@‘ &

Variant
calling

OA>T
OC>T
OT>6
Submit and filter your Predict candidate
variants pathogenic combinations

Submit a variant list of a single individual (VCF  Predict candidate pathogenic combinations of
or tab-delmited list) and filter your variants  variants in any gene pair with VarCoPP and
based on their Minor Allele Frequency (MAF), further predict their digenic effect (True Digenic,
their position in the gene and/or based on a Monogenic with a Modifier variant or Dual

specific gene panel of your choice. Diagnosis) with the Digenic Effect Predictor.

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Explore oligogenic
signatures
Investigate  potential  oligogenic  disease
signatures by exploring the predicted gene

networks and examine them in the context of
their pathways, protein-protein interactions and

cellular locations.



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

BI-LOCUS PATHOGENICITY PREDICTIONS

& Search: | Gene names/variants
~100 . 99%-zone candidate disease-causing o 098 0 cEDOSBeD @0
I 95%-zone candidate disease-causing [} . _— VarCoPP Score 2]
" Variant combination
Candidate disease-causing ° Gene Pair (Click for more details)
-90 Neutral R Classif. Support 1
. 10K neutral variant combinations &
.‘ AHSG 3:186338564:C:T 0.95 100.00
- 80 ESAM 11:124626569:G:A
[
AHSG 3:186338564:C:T 0.95 100.00
-70 FAH 15:80472526:C:T
VEGFC 4:177650866:C:T 0.94 100.00
__-60 AHSG 3:186338564:C:T
[9]
(2}
o AHSG 3:186338564:C:T 0.94 100.00
8 - 50 SERPINA1 14:94844947:C:T
(2]
E AHSG 3:186338564:C:T 0.94 100.00
g&_ 40 APOH 17:64210580:A:G
[}
VEGFC 4:177650866:C:T 0.94 100.00
-30 FAH 15:80472526:C:T
AHSG 3:186338564:C:T 0.93 100.00
-20 POSTN 13:38156538:C:T
VEGFC 4:177650866:C:T 0.93 100.00
-10 APOH 17:64210580:A:G
VEGFC 4:177650866:C:T 0.92 100.00
—0 tm memme w8 o AHSG 3:186338397:C:A
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
| | | | | 1 1 I I I I
Classification Score (CS) SERPINA1 14:94844947:C:T 0.92 100.00
APOH 17:64210580:A:G
cC ® % e 1-10/ 155 variant pairs Previous - 2 3 4 5 .. 16 Next

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

BI-LOCUS PATHOGENICITY PREDICTIONS

Pathogenicity prediction: feature contributions

0.20 —

0.15 —

0.10 —

0.05 —

0.00 —

-0.05 —

contribution among all VarCoPP predictors

-0.10 —

eature

w -0.15 —

-0.20 —

LR

Digenic Effect Prediction

Flex

[ | I | [ | I [ |
1 Hydr1 CADD1 CADD2 CADD3 CADD4 HI_A RecA HI_B

VarCoPP Features

. Preference for the disease-causing class

. Preference for the neutral class

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Monogenic + Modifier Dual Molecular Diagnosis



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

FURTHER EXTERNAL ANNOTATIONS

Annotations

g AHSG FAH

CHROMOSOME 3 CHROMOSOME 15
GENE NAME GENE NAME FAH
ENSEMBL GENE ID ENSG00000145192 ENSEMBL GENE ID ENSGO00000103876
UNIPROT PROTEIN ID P02765 UNIPROT PROTEIN ID P16930
GDI © 105.08096 GDI © 149.7435
P(HAPLOINSUFFICIENCY) 0.47188 P(HAPLOINSUFFICIENCY) 0.1414
P(RECESSIVENESS) 0.39186 P(RECESSIVENESS) 0.24341

@ Variant chr3:186338564 C>T Variant chr15:80472526 C>T
GENOMIC CHANGE a. GENOMIC CHANGE g. C>T
cDNA CHANGE €.949C>T cDNA CHANGE c.1021C>T
PROTEIN CHANGE p.R317C PROTEIN CHANGE p.R341W
ZYGOSITY Homozygous ZYGOSITY Homozygous
RS ID RSID
ENSEMBL TRANSCRIPT ID o ENSEMBL TRANSCRIPT ID (2]
CADD © 6.093498 CADD @ 6.361174
ExAC ALLELE FREQ. 0.01085 ExAC ALLELE FREQ. 0.021979

‘9 {AHSG - FAH }
BIOLOGICAL DISTANCE @ 14602

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93
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PLATFORM

PREDICTED PATHOGENIC NETWORKS

pathogenic
combination

Gene selection 2]
L3 Search gene
Gene Centrality l
. IMPAD1
FAH 12
AHSG 12
POSTN 10
APOH 9
VEGFC 9
SERPINA1 8
CTSZ 8
ESAM 7
.TMEM1320
TMEM132C 7
IDUA 5
1-10/18
Centrality: Degree s
Filtering (2]
Gene Pair Pathogenicity Score: .
| @ | pathogenicity score HABP2

Centrality:

05 06 07 08 09 1.0

. nvyn

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

> Information summary

s

£ Click here to further explore this gene
le

()
59
O—0

Selected gene
Gene name: FAH
Ensembl Id: ENSG00000103876
UniProt acc.: P16930
GDI: 149.74

Gene Module

Genes:
FAH,ESAM,SERPINA1,APOH,AHSG,POSTN,CTSZ VEGF
Cc
Size: 8 genes
Network Density: 52.38 %
Median Pathogenicity Score: 0.92
Pathway Overview

Coverage: 87.50%
Top 3:

Platelet degranulation

to el d platelet cy ic Ca2+

COPII-mediated vesicle transport
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NETWORK MODULE INFORMATION

Protein-protein
interactions

- -

-

S~ o
-~

\ 4

.-~ External
interacting
proteins

-
-
_____

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Cellular
compartment

location

nucleus:
15.28%
mitochondrion: .

4.17%

secretory-pathway:
18.06%

membrane:
19.44%

cytosol:
25.00%

extracellular:
18.06%
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NETWORK MODULE INFORMATION

Pathway
TreeMap

Pathway - Gene
' Mappings v

: " - & Search: ~Gene / Path
Hemostasis Metabolism of proteins eerch: | Sene /Tevey
Platelet activation, signaling and aggregation Cell Peptide hormone metabolism Regulation

surface | Metabolism of Anaiotensinoden to Anaiotensins  Insulin-like Pathwa Genes
5 A y
Post-translational protein modification Gr m""“r'
gfn?wn | Hemostasis ESAM,VEGFC,AHSG, SERPINA1,APOH
uj
m‘h Platelet activation, signaling and aggregation AHSG,VEGFC,APOH,SERPINA1
Factor
m’-ﬁ, Response to elevated platelet cytosolic Ca2+ AHSG,VEGFC,APOH,SERPINA1
(IGFBPs)
Platelet degranulation AHSG,VEGFC,APOH,SERPINA1
Immune System SERPINA1,AHSG,CTSZ
Vesicle_mediated trand Metab Slgnal Innate Immune System SERPINA1,AHSG,CTSZ
Memt T . Metabolis!| Sianali
rai “ = Neutrophil degranulation SERPINA1,AHSG,CTSZ
Immune SyStem Metabolism of proteins SERPINA1,AHSG,CTSZ
Innate Immune System
Post-translational protein modification SERPINA1,AHSG,CTSZ
Unknown Asparagine N-linked glycosylation SERPINA1,CTSZ
1-10/37

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93
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EXPLORING A REAL PUBLISHED CASE

Recent clinical study of a patient with mild hypertrophic cardiomyopathy.

‘ ‘ We report the case of a master athlete carrying
trigen ic mutations in desmoglein-z (DSGZ)) J Electrocardiol. 2019 Mar - Apr;53:95-99. doi: 10.1016/j.jelectrocard.2019.01.002. Epub 2019 Jan 2.

desmocollin-2 (DSC2) and heavy chain myosin 6 Sudden death in mild hypertrophic cardiomyopathy with
compound DSG2/DSC2/MYH6 mutations: Revisiting phenotype
(M YH 6) ( . ) . after genetic assessment in a master runner athlete.

Pathogenic network of the patient
homozygous
@Gg . o VarCoPP Score @
Variant combination

Gene Pair
(Click for more details) 3
9o DSC2 Classif. Support ||

DSC2 18:28648000:-:TC 0.81 100.00
DSG2 18:29104714:A:G

DSC2 18:28648000:-:TC 0.69 99.40
MYH6 14:23865901:A:G

DSG2 18:29104714:A:G 0.57 85.60

MYH6 14:23865901:A:G

. MYH6 @

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93
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EXPLORING A REAL PUBLISHED CASE

TMEM17

PKP3

TMEM216

Developmental Biology
Keratinization

Pathway

Developmental Biology

Keratinization

Formation of the cornified envelope

Programmed Cell Death

Apoptosis

Apoptotic execution phase

Apoptotic cleavage of cellular prot...

Apoptotic cleavage of cell adhesio...

Muscle contraction

Striated Muscle Contraction

Genes

DSC2,DSG2

DSC2,DSG2

DSC2,DSG2

DSG2

DSG2

DSG2

DSG2

DSG2

MYH6

MYH6

Programmed Cell Death
Apoptosis

Muscle contraction
Striated Muscle Contraction

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93




CONCLUSIONS

o Most tools and techniques have focused on a
univariate analysis towards oligogenic diseases

o We appear to have good quality pathogenicity
predictions for variant combinations in pairs of
genes

o We show the usefulness of interpretable machine
learning methods in medical genetics

o We can distill oligogenic modules, which could
provide a new way of exploring a patient’s exome



THERE IS STILL A LOT OF WORK TO DO

o Validating our tools on multiple cohorts H'@ -

(neurodevelopmental diseases, deafness, epilepsy,

Brugada syndrome, congenital heart defects...) Universiteit - 8 L T
=10K cHent

UNIVERSITY

o Provide trio analysis in ORVAL

o Use phenotypic information for filtering/annotation
o New features

o Create disease-specific predictors

o Transform DIDA into a community effort
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