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The Interuniversity Institute 
of Bioinformatics in Brussels 

Brussels, Belgium

Harness and scale bioinformatics expertise

Provide infrastructure

Provide scientific advancements Tom 
Lenaerts

Wim 
Wranken

The directors
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15 ONGOING PROJECTS



GENETIC DISEASES: SEEKING UNDERSTANDING

Many have genetic origin

Difficult to associate a phenotype with genetic cause  

30 million people 
affected by a rare disease

in Europe

Source: EURORDIS
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MACHINE LEARNING FOCUS ON MONOGENIC

Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.
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THE PROCESS OF MACHINE LEARNING
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Source: https://towardsdatascience.com



DIFFERENT MACHINE LEARNING ALGORITHMS
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Source: https://towardsdatascience.com



THE PROCESS OF MACHINE LEARNING
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Source: https://towardsdatascience.com



INTERPRETABILITY IS IMPORTANT
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Source: https://www.infoq.com/presentations/machine-learning-gdpr/

An interpretable model can be more 
fair, reliable and trustworthy.    

white 
box

black
box



MACHINE LEARNING FOCUS ON MONOGENIC

Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.
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“Normal”

“Disease”

...AGTGCGGTG...

...AGTGAGGTG...

...SAV...

...SEV...
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MACHINE LEARNING IN VARIANT PREDICTION
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MACHINE LEARNING IN GENE PREDICTION

Source: Tranchevent, et al. (2011). Briefings in Bioinformatics. 12(1), 22.



FROM MONOGENIC TO OLIGOGENIC

Source: McCarthy, et al. (2008). Nature reviews genetics. 9(5), 356.
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Networks using a 
univariate analysis
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NETWORKS: THE NODE TO EDGE APPROACH

APOH

ESAMFAH

TTN AHSG
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BASED ON PPIs, CO-EXPRESSION, PRESENCE OF SEVERE SNPs



DIFFERENT APPROACH: FROM EDGES TO NODES

APOH

ESAMFAH

TTN

AHSG
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FAH

ESAM

APOH

FAH
APOH

ESAM

TTN

KNOWN OR PREDICTED DISEASE-CAUSING GENE PAIRS



APOH

ESAMFAH

TTN AHSG
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DIFFERENT APPROACH: FROM EDGES TO NODES

BASED ON KNOWN OR PREDICTED KNOWLEDGE



HYPOTHESIS 1:
Sufficient cases exist, where 
mutations in two genes explain 
better the phenotype of a patient 
than a mutation in one gene alone. 
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DIDA: THE DIGENIC DISEASES DATABASE

http://dida.ibsquare.be

A T C A A G T A C C G T G A A C C C T G G G 

C A

BBS2 MKKS

Bardet-Biedl syndrome

bi-locus 
variant combination

Andrea 
Gazzo

Dorien
Daneels

Claudio 
Reggiani
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http://dida.ibsquare.be/


258 COMBINATIONS, 55 DIGENIC DISEASES
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Source: http://dida.ibsquare.be



THE COMBINATIONS PAGE IN DIDA

Source: http://dida.ibsquare.be
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allele 1

allele 2

A bi-locus 
variant combination

Gene A Gene B



OLIDA IS COMING SOON

26

Arnau
Dillen

Adapted for oligogenic cases

Adapted for CNVs

Improved paper curation

Faster data submission

Charlotte 
Nachtegael



MAIN TYPES OF BI-LOCUS COMBINATIONS

True Digenic

Monogenic + Modifier

Dual Diagnosis

a

b

c

Gene 1 Gene 2

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

A bi-locus model explains 
better the phenotype
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Problem: 1/3 of the data is not classified with a bi-locus 
effect



HYPOTHESIS 2:
It is possible to differentiate
between different types of bi-locus 
combinations using machine 
learning. 
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THE BI-LOCUS EFFECT PREDICTOR

Aziz
Fouché

Nassim
Versbraegen
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 
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Monogenic + Modifier

Dual Diagnosis
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THE BI-LOCUS EFFECT PREDICTOR
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

USING A MULTI-LAYER ANNOTATION

allele 1

allele 2

Gene A Gene B

CADD1 CADD3

CADD2 CADD4
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Pathway

[ 0.52, -10, …. , 0.82, 1 ]

Vector of 9 elements (features)



THE BI-LOCUS EFFECT PREDICTOR

36average final class

75 True Digenic 
combinations

90 Monogenic + Modifier
combinations

b

c

a

b

Gene 1 Gene 2

vs

node/feature test

vs c

75 Dual Diagnosis
combinations

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

A RANDOM FOREST MODEL



THE BI-LOCUS EFFECT PREDICTOR
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A MODEL WITH GOOD PERFORMANCE

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

Class Sensitivity Specificity

Dual Molecular Diagnosis 0.8 0.79

Monogenic + Modifier 0.57 0.65

True Digenic 0.7 0.65

It’s easier to differentiate dual molecular diagnosis from 
the other two classes.



THE BI-LOCUS EFFECT PREDICTOR
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DMDs DIFFERENTIATED (CADD, PATHWAY)

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 



THE BI-LOCUS EFFECT PREDICTOR
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INTERPRETABILITY WITH GAME THEORY 

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

Pay-off cooperative game using 
the set F of 9 features as agents

b

c

a

b

Gene 1 Gene 2

c

x
sensitivity

specificity
=

6 games, 
6 rewards

Testing all possible 29 - 1 feature coalitions S belonging to F

Reward: sensitivity, 
specificity

Shapley value ϕF : 
a relative value on how much an agent contributes to a 

v(S)

reward v(S): the 
geometric mean



THE BI-LOCUS EFFECT PREDICTOR
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

b

c

a

b

Gene 1 Gene 2

c

x
sensitivity

specificity
=

6 games, 
6 rewards

Testing all possible feature coalitions S of pairs Fi and Fj

Reward: sensitivity, 
specificity

joint contribution γi,j

A feature pair can be redundant, complementary or synergistic

reward v(S): the 
geometric mean

Pay-off cooperative game using 
all pairs of F features as agents

INTERPRETABILITY WITH GAME THEORY 



THE BI-LOCUS EFFECT PREDICTOR
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

o High synergy of 
pathway with almost 
any feature

o Synergy of CADD2 
and CADD4 with 
pathway and gene 
recessiveness / 
essentiality

INTERPRETABILITY WITH GAME THEORY 



THE BI-LOCUS EFFECT PREDICTOR
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CLUSTERING DIDA BI-LOCUS COMBINATIONS

Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 

http://bespace.ibsquare.be/

http://bespace.ibsquare.be/


HYPOTHESIS 3:
It is possible to differentiate
between disease-causing and 
neutral combinations using 
machine learning. 
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APOH

ESAMFAH

TTN AHSG
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DIFFERENT APPROACH: FROM EDGES TO NODES

VarCoPP



VARCOPP: THE PATHOGENICITY PREDICTOR
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Source: Versbraegen, et al. (2019). Artificial Intelligence in Medicine. 99, 101690 
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Disease-
causing

Neutral

Sofia
Papadimitriou
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VARCOPP: THE PATHOGENICITY PREDICTOR
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Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

vs

THE DATA

213 bi-locus 
combinations

2500 individuals
trillions of 
combinations



VARCOPP: THE PATHOGENICITY PREDICTOR
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MULTILAYER ANNOTATION
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allele 1

allele 2

Gene A Gene B

CADD1,
Hydr. diff 
Flex. diff CADD3

CADD2 CADD4

Re
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I_

A RecB, H
I_B

Biol. distance

[ 0.52, -10, …. , 0.82, 1 ]

Vector of 11 elements (features)

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 



VARCOPP: THE PATHOGENICITY PREDICTOR
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THE MODEL
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1KGP
25% of proteome

500x sampling of 200 
combinations  

40 individuals per continent
degrees separation as DIDA
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Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 



VARCOPP: THE PATHOGENICITY PREDICTOR
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0.88 ACCURACY, 0.74 MCC

49

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 



THE BI-LOCUS EFFECT PREDICTOR
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node/feature test

terminal node
assignment to a class

INTERPRETABILITY WITH RANDOM FOREST

[ 0.52, -10, …. , 0.82, 1 ]

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

Disease-
causing

Neutral



VARCOPP: THE PATHOGENICITY PREDICTOR

51

INTERPRETABLE PREDICTIONS
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Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

Preference for the disease-causing class

Preference for the neutral class



VARCOPP: THE PATHOGENICITY PREDICTOR
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DIDA COMBINATIONS FORM AN S-PLOT
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Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

predicted
disease-causing

predicted 
neutral



VARCOPP: THE PATHOGENICITY PREDICTOR
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TESTING WITH UNKNOWN 1KGP DATA
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5% FPs

7% FPs

1% FPs

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

95%-confidence
zone

99%-confidence 
zone



VARCOPP: THE PATHOGENICITY PREDICTOR
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TESTING WITH UNKNOWN DISEASE DATA
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95%-zone

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

99%-zone



VARCOPP: THE PATHOGENICITY PREDICTOR

5959

Source: Papadimitriou, et al. (2019). PNAS. 116(24), 11878 

https://varcopp.ibsquare.be

Nassim
Versbraegen

Sofia
Papadimitriou



HYPOTHESIS 3:
Using pathogenicity predictions on 
gene pairs we discover oligogenic 
disease signatures with the use of 
networks.

60



APOH

ESAMFAH

TTN AHSG
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DIFFERENT APPROACH: FROM EDGES TO NODES

VarCoPP



INSPIRED BY THE BELGIAN TRADITIONS 

6464
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ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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Sofia
Papadimitriou

Nassim
Versbraegen

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

https://orval.ibsquare.be



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM

6666

Patient with 
disease

Genome 
sequencing

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Variant
calling



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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BI-LOCUS PATHOGENICITY PREDICTIONS

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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BI-LOCUS PATHOGENICITY PREDICTIONS

Pathogenicity prediction: feature contributions

Preference for the disease-causing class

Preference for the neutral class

Digenic Effect Prediction

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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FURTHER EXTERNAL ANNOTATIONS

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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PREDICTED PATHOGENIC NETWORKS

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

pathogenic 
combination



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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NETWORK MODULE INFORMATION

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Selected 
gene set 
proteins

External 
interacting 
proteins

Protein-protein 
interactions

Cellular 
compartment 
location



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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NETWORK MODULE INFORMATION

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Pathway 
TreeMap

Pathway – Gene  
Mappings



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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EXPLORING A REAL PUBLISHED CASE

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93

Recent clinical study of a patient with mild hypertrophic cardiomyopathy.

Pathogenic network of the patient

We report the case of a master athlete carrying
trigenic mutations in desmoglein-2 (DSG2),
desmocollin-2 (DSC2) and heavy chain myosin 6
(MYH6) (…).“

homozygous



ORVAL: AN OLIGOGENIC ANALYSIS PLATFORM
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EXPLORING A REAL PUBLISHED CASE

Source: Renaux, et al. (2019). Nucleic Acids Research. 47(W1), W93



CONCLUSIONS

8282

o Most tools and techniques have focused on a 
univariate analysis towards oligogenic diseases

o We appear to have good quality pathogenicity 
predictions for variant combinations in pairs of 
genes

o We show the usefulness of interpretable machine 
learning methods in medical genetics

o We can distill oligogenic modules, which could 
provide a new way of exploring a patient’s exome



THERE IS STILL A LOT OF WORK TO DO

8383

o Validating our tools on multiple cohorts 
(neurodevelopmental diseases, deafness, epilepsy, 
Brugada syndrome, congenital heart defects…)

o Provide trio analysis in ORVAL

o Use phenotypic information for filtering/annotation

o New features

o Create disease-specific predictors

o Transform DIDA into a community effort



Nassim
Versbraegen

Charlotte
Nachtegael

ACKNOWLEDGING THE OLIGOGENIC TEAM 

8484

Our professors and 
senior researchers

Our PhD / Master students,
junior researchers

Tom 
Lenaerts

Ann 
Nowé

Guillaume 
Smits

Sonia
van Dooren

Jan 
Aerts

Yves 
Moreau

Sofia
Papadimitriou

Alexandre
Renaux

Simon 
Boutry

Andrea
Gazzo

Dorien
Daneels

Claudio 
Reggiani

Arnau
Dillen

Aziz
Fouché


